Avainsana-arkisto: vauhtipyörä

6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – mittaukset


6V -> 12 V muutoksen artikkelisarjan aikaisemmat artikkelit järjestyksessä:

  1. Sytytyspuolan ja valopuolan vaihto
  2. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – esivalmistelut
  3. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – osat
  4. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – peruskytkennät: jännitteensäädin/tasasuuntaaja, akku

Seuraavassa on toteutettu sähkömittauksia PeeVelistä liittyen 6V -> 12V muutokseen mutta mittaukset ovat toki käyttökelpoista tietoa muuhunkin, mm. mopon sähköjärjestelmän toiminnan ymmärtämiseen.

Mittailu kannattaa, sillä se on kehittävää. Erästä henkilöä lainaten: ”mittailu on kehittävää puuhaa, varsinkin jos haluaa oikeita mittaustuloksia”.

Sähkötekniikan perusteita löytyy sivulta ”Sähköoppia mopoilijalle”. Magneeton ja sytyksen teoriaa teoriaa taas sivulta ”Sähköoppia mopoilijalle –  magneeton ja sytytyksen teoriaa”. Sähkömittauksista ja vioista löytyy tietoa artikkelista ”Sähkömittauksia ja -vikoja”. Yleismittarin käytöstä löytyy tietoa Opetushallituksen linkistä ”Yleismittarit ja niiden käyttö”. Hyvät oskilloskooppiartikkelit suomeksi ovat harvassa. Hyvä artikkelit englanniksi ovat ”How To Use an Oscilloscope” ja ”Oscilloscope How-To”.

Kesäinen mittauslaboratorio

Kesäinen mittauslaboratorio

1) Välineet

Näissä mittauksissa käytettiin perinteistä yleismittaria sekä digitaalista oskilloskooppia.

  • TRMS yleismittari Fluke 179
  • Oskilloskooppi Tektronix TDS1002B,  tallentava kaksikanavainen 60 MHz 1 GS/s digitaalioskilloskooppi USB tallennusominaisuudella
  • Oskilloskoopin passiivinen 10x/1x mittapää P2220 (taajuus: 200 MHz/6M Hz, resistanssi: 10 Mohm/1Mohm, kapasitanssi: 16 pF/95 pF)

2) Vaihtosähköpiirin magneeton valopuola – jännitteensäädin mittaus

Valopuolan yleismittarimittaukset tehtiin puolien vaihdon yhteydessä. Jännite valopuolalta oli n. 1/4 kaasulla reilut 13 VAC ilman 6V jännitteensäädintä ja reilut 7 VAC sen kanssa. Kovilla kierroksilla jännite nousi ilman säädintä vielä useita voltteja, joten 12V järjestelmä oli mahdollinen toteuttaa.

Oskilloskoopilla tutkittiin uuden valopuolan tuottamaa aaltomuotoa sen molemmista johtimista.

Valopuolan mittaus oskilloskoopilla maan (runko) ja itse tehdyn puolan johdon (väri B) välistä

Valopuolan mittaus oskilloskoopilla maan (runko) ja itse tehdyn puolan johdon (väri B) välistä

Oli epäilys, että tehollinen osuus aaltomuodosta on hyvin lyhyt ja laadukaskaan yleismittari ei ehdi sitä näkemään. Ohessa on kuva mittauksesta kuormittamattomalta valopuolalta ilman jännitteensäädintä, tyhjäkäynnillä. Yhden Y-akselin suuntaisen ruudun ollessa 10V, huipusta huippuun (peak-to-peak, pp) jännite on reilut 40 Vpp. Yhden X-akselin suuntaisen ruudun ollessa 5 ms, täysi aallon jaksonaika (T, yksikkö sekuntia) on n. 10 ms ja siten taajuus f = 1/T = 1/0,01s = 100 Hz. Taajuus vaihtelee luonnollisesti paljon kierrosluvun koko ajan muuttuessa. Oskilloskooppi laskee ja näyttää taajuuden myös itse ja kuvan tallennushetkellä taajuus oli n. 92 Hz.

Aaltomuoto on kaukana täydellisestä siniaallosta ja etenkin halvat, ei True RMS -yleismittarit ovatkin vaikeuksissa tällaisen muodon kanssa. Yksittäisen piikin pituus on n. 2,5…3 ms ja siksi tehollinen osuus on hyvin lyhyt yleismittarin mitatattavaksi.

Oskilloskooppimittaus valopuolalta ilman jännitteen säädintä, tyhjäkäynnillä.

Oskilloskooppimittaus valopuolalta, ilman jännitteensäädintä, kuormittamattomana, tyhjäkäynnillä.

Mopon kierroksia nostamalla taajuus luonnollisesti kasvaa, kun magneeton vauhtipyörä pyörii nopeammin ja magneettikenttä siksi ”leikkaa” puolan johtimia useammin aikayksikössä.

Valopuolan mittaus kuormittamattomana, puolikaasu

Oskilloskooppimittaus valopuolalta ilman jännitteensäädintä, kuormittamattomana, puolikaasu

Laitoimme mittauksen ollessa päällä valot päälle ja painoimme myös jarrupoljinta. Kuorman kanssa huipusta huippuun arvo putoaa radikaalisti. Samalla tosin aaltomuotokin järkevöityy.

Oskilloskooppimittaus valopuolalta, ilman jännitteen säädintä, valot ja jarruvalo päällä

Oskilloskooppimittaus valopuolalta ilman jännitteen säädintä, valot ja jarruvalo päällä

Energiaa ei synny tyhjästä (ks. sivu ”Sähköoppia mopoilijalle”). Kuorman kasvaessa valot imevät energiaa magneetosta ja magneettikentän ylläpitoon tarvittava lisäenergia jarruttaa magneettoa. Kierrokset laskevat ja bensiiniä kuluu.

3) Tasasähköpiiri säätimen jälkeen: akun latausjännitteen mittaus ilman akkua

Disclaimer: säädintä ja sähköjärjestelmää ei välttämättä ole tehty kestämään käyttöä ilman akkua. Säätimen toiminta saattaa vaatia sen, että akku on tasaamassa nopeita jännitteen muutoksia. Muut sähköjärjestelmän osat saattavat vioittua akuttoman käytön takia.

Otimme tietoisen riskin ja tutkimme akun latausjännitettä jännitteensäädin/tasasuuntaaja jälkeen suoraan latausjohdosta ilman akkua sekä yleismittarilla että oskilloskoopilla.

Yleismittarimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Yleismittarimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Yleismittarin DC-mittauksella saatiin tulos n. 4-5 V, mikä herätti ensin huolta siitä, onko jotain pielessä säätimessä ja/tai kytkennöissä. Kyseisellä jännitteellä kun akkua ei speksien mukaan ladata. Syyksi  arveltiin edellä mainittua yleismittarin hitautta ja siksi tehtiin oskilloskooppimittaus. Jos yleismittarissa on peak-to-peak tai peak-hold toiminnolla, sillä saa ehkä paremmin huippuarvoja esille. Huiput ovat ne, jotka lataavat akkua. Pitää muistaa että sellaisen siniaallonkin, jonka huiput  ovat 14 V, mittarin näyttämä tehollisarvo on vain noin 10 V.

Oskilloskooppimittaus DC-moodissa (DC coupling) samoista pisteistä paljasti erikoisen aaltomuodon. Yleismittari ei pysy tällaisen perässä. Saadusta käyrästä pitäisi laskea pinta-ala ja sitä kautta tehollisarvo. Tämä on hieman haastavampaa matematiikkaa. Tehollisarvo saattaa hyvinkin olla 4-5 V luokkaa, kun aaltomuoto käy jopa negatiivisen puolella.

Oskilloskooppimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Oskilloskooppimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Pitää myös muistaa, että akun ollessa irroitettuna mittausta häiritsee todennäköisesti moni asia. Tasasuuntauksen (tai mikä siellä säätimessä sitten onkaan; tyristori, zener-diodi, tms.) ’eristettynä’ olevaan  kelluvaan johtoon indusoituu varmasti häiriöitä mopon muista sähkösysteemeistä, valopuolan syöttämistä johdoista jne. Oskilloskoopin mittapää (probe) on niin suuri-impedanssinen että se ei ota virtaa ja siis kuormita käytännössä yhtään säädintä. Toisin sanoen, säädin ei näe mitään kuormaa.

Jotta mittaukseen saataisiin jotain tolkkua, akun tilalle pitää kytkeä kuormaa, joka tasoittaa haamujännitteet pois ja johdossa näkyy vain mitä säädin oikeasti antaa ulos. Esim. 150-200 ohmin vastus on sopiva. Laatikostamme löytyi 269 ohmin vastus ja kytkimme sen akun tilalle. Varo oikosulkemasta akun johtoja!

269 ohm vastus akun tilalla oskilloskooppimittauksessa.

269 ohm vastus akun tilalla oskilloskooppimittauksessa. Varo oikosulkemasta akun johtoja!

Nyt haamujännitteet katosivat ja alettiin saamaan järkevämpää aaltomuotoa, joka oli mm. kokonaisuudessaan positiivisella puolella Y-akselia. Kuvassa olevien piikkien huiput ovat nyt ne aaltomuodon osat, jotka oikeasti lataavat akkua. Akun sisäinen vastus on kuitenkin pienempi kuin 269 ohm testivastuksemme, joten latausjännite ei normaalikäytössä ole näin suuri.

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, tyhjäkäynti

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, tyhjäkäynti

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, puolikaasu

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, puolikaasu. Huomaa skoopin automaattinen alueen muutos jännitteen noustessa; nyt yksi pystyruutu Y-akselilla on 10V.

3) Akun jännitteen (latausjännite) mittaus akun ollessa kytkettynä

Mittasimme seuraavaksi akun yli olevan jännitteen (latausjännitteen) tyhjäkäynnillä ja puolikaasulla akun ollessa normaalisti kytkettynä sähköjärjestelmään. Edelleenkään, akku ei syöttänyt mitään laitetta, ts. se oli ilman kuormaa.

Tyhjäkäynnillä akku ei liiemmin lataudu, sillä jännite jää alle akun latausspeksin. Tämä tietenkin riippuu siitä, mihin tyhjäkäyntikierrokset on säädetty.

Yleismittarimittaus akun yli, tyhjäkäynti, ei kuormaa

Yleismittarimittaus akun yli, tyhjäkäynti, ei kuormaa

Oskilloskooppimittaus akun yli, tyhjäkäynti, ei kuormaa

Oskilloskooppimittaus akun yli, tyhjäkäynti, ei kuormaa

Jo neljänneskaasulla jännite nousee selvästi. Latausta tapahtuu varmasti viimeistään puolikaasulla.

Yleismittarimittaus akun yli, puolikaasu, ei kuormaa

Yleismittarimittaus akun yli, puolikaasu, ei kuormaa

Oskilloskooppimittaus akun yli, puolikaasu, ei kuormaa

Oskilloskooppimittaus akun yli, puolikaasu, ei kuormaa

Tutkimme myöhemmin akun latausvirtaa eri kuormilla ja päivitämme tulokset tähän artikkeliin.

Seuraavaksi on vuorossa mopon käyttöä tällä sähköjärjestelmällä ja lopulta valosähköjärjestelmän muutos, mikä tarkoittaa myös muutoksia tarvikejohtosarjaamme. Näistä artikkeli myöhemmin.

Mainokset

Sytytyspuolan ja valopuolan vaihto


Tästä artikkelista alkaa artikkelisarja, joka käsittelee 6V sähköjärjestelmän muutosta 12V järjestelmäksi.

Kokosimme aikanaan magneeton vanhoin osin, ks. artikkeli ”Moottorin kokoaminen 3- magneeton puoli”. Muutamaan kertaan projektin aikana tuli ilmi, että sähköenergian tuotto oli hieman riittämätöntä. Tämä on 6V sähköjärjestelmän PV:ssä yleinen ominaisuus mutta havaitsimme erilaisia vikoja, esim valojen himmeys ja normaalia suurempi ”vilkkuminen” oli aika selvä ongelma. Sytytyksen täydellisestä toimivuudesta ei kipinän voimakkuuksineen myöskään ollut täyttä varmuutta; oli epäilys, että kipinä on heikko. Siksi jälkeenpäin päätettiin vaihtaa sytystyspuola (primääripuola) ja valopuola.

Onnistuimme löytämään vielä Suzukin alkuperäiset puolat, vaikka niiden valmistus on tiettävästi lopetettu.

Suzukin alkuperäisosat herättävät aina tiettyä luottamusta.

Suzukin alkuperäisosat herättävät aina tiettyä luottamusta.

Mittasimme uudet puolat. Sähkömittauksista kannattaa katsoa artikkeli ”Sähkömittauksia ja -vikoja”, missä mm. oikeat mittaustavat ja -arvot.

Sytytyspuolan mittaus.

Sytytyspuolan mittaus.

Valopuolan mittaus valkoisesta johdosta.

Valopuolan mittaus valkoisesta johdosta.

Valopuolan mittaus vihreästä johdosta.

Valopuolan mittaus vihreästä johdosta.

Osat ja tarvikkeet:

Työkalut:

  • Perustyökalut: kuusiokoloavaimet, hylsyt ja vääntimet
  • Magneeton vauhtipyörän ulosvetäjä
  • Juotoskolvi
  • Yleismittari ja mittapäät

Purkaminen

Ensiksi irroitettiin vaihdepoljin ja magneeton koppa varoen rikkomasta tiivistettä. Koppa oli normaalin likainen vetoakselin puolelta mutta magneeton puoli oli siisti. Koneremontissa uuteen vaihdetussa vaihdeakselissa oli pintaruostetta, mikä ei tarvikeakselin kyseessä ollessa ihmetyttänyt. Vaihdeakselin stefa oli toiminut moitteetta, öljyvuotoja ei näkynyt.

Magneeton kopan alta paljastuu siisti magneeton puoli ja normaalin likainen vetoakselin puoli.

Magneeton kopan alta paljastuu siisti magneeton puoli ja normaalin likainen vetoakselin puoli.

Vauhtipyörä pyörii vastapäivään ja sen mutterin kierre on normaali, oikeakätinen. Vauhtipyörää täytyy pitää lujasti paikallaan, jotta mutterin saa auki. Suzukilla on tähän erikoistyökalu (09930-40113 Rotor holder, työkalu nro 30). Jos tällaista ei ole saatavilla, vältä työntämästä mitään vauhtipyörän aukkoihin siten, että pohjalevy tai puolat rikkoontuvat. Iso vaihde päälle ja kaveri istumaan mopon päälle jarruja painamaan voi auttaa, samoin napautus kumivasaralla tms. vääntimen päähän.

Suzukin erikoistyökalu vauhtipyörän kiinni pitämiseen.

Suzukin erikoistyökalu 09930-40113 vauhtipyörän kiinni pitämiseen mutteria avattaessa.

Vauhtipyörän mutteri pois.

Vauhtipyörän mutterin poisto. Kierre on oikeakätinen.

Vauhtipyörä on mutterivarmistuksen lisäksi tiukalla sovitteella ja kiinni kampiakselissa ja sitä pitää paikallaan kiertosuunnassa kiila. Vauhtipyörässä olevan ulosvetäjän kierre on vasenkätinen, eli ulosvetäjä kiristyy vauhtipyörään pyörittämällä ulosvetäjän runkoa vastapäivään. Vauhtipyörä tulee ulos kiristämällä ulosvetäjän pulttia myötäpäivään ja pitämällä vauhtipyörää samalla vastaan.

Ulosvetäjä vauhtipyörän vasenkätiseen kierteeseen.

Ulosvetäjä vauhtipyörän vasenkätiseen kierteeseen.

Puolien vaihto_4

Vedä irronnut vauhtipyörä varovasti ulos.

Kyseisessä yksilössä oli aikanaan pahoja moottorilohkovikoja, joita korjailtiin mm. kemiallisella metallilla. Jännitti nähdä, ovatko korjaukset toimineet ja pitäneet lian ja veden poissa.

Magneeton tiivistys on toiminut.

Magneeton tiivistys on toiminut.

Vauhtipyörä on puhdas kuten pitää olla.

Vauhtipyörä on puhdas kuten pitää olla. Ei löytynyt myöskään raapimisjälkiä.

Kierrelukitteesta huolimatta valopuolan ruuvit olivat löystyneet ja se pääsi hieman liikkumaan. Tämä on voinut aiheuttaa havaittua valojen ”vilkkumista”. Katastrofi on ollut lähellä; valopuolan irtoaminen hajottaa paljon paikkoja, sillä pyörimisnopeus ja liike-energia on suuri.

Yksi vika löytyi, valopuolan ruuvit olivat löystyneet.

Yksi vika löytyi, valopuolan ruuvit olivat löystyneet.

Pohjalevy irti.

Pohjalevy irti.

Siistiä täälläkin, sähköjohdot yhä napakasti kiinni.

Siistiä täälläkin, sähköjohdot yhä tarkoin suojattu ja vedonpoistaja pitää ne napakasti paikallaan.

Seuraavaksi otettiin juotokset esiin ja sulatettiin ne auki. Kutistesukan saa leikattua kätevästi teräväkärkisellä ”kirurginveitsellä”. Tässä vaiheessa on syytä valokuvata tai kirjoitella värit ylös.

Kutistesukat saa nätisti auki

Kutistesukat saa nätisti auki ”kirurginveitsellä”.

Juotokset näkyvillä.

Juotokset näkyvillä.

Tässä vaiheessa kannattaa katsoa värit ja merkata ne ylös.

Tässä vaiheessa kannattaa katsoa värit ja merkata ne ylös.

Pohjalevy ja vanhat puolat. Huomaa eripituiset kiinnitysruuvit ja sytytyspuolan tärkeä maadoitusjohto.

Pohjalevy ja vanhat puolat. Huomaa eripituiset kiinnitysruuvit ja sytytyspuolan tärkeät maadoitusjohto sekä vedonpoistajaklipsi.

Kokoaminen ja kytkennät

Seuraavaksi kiinnitetään puolat pohjalevyyn ja reititetään johdot. Kierrelukite ja oikea kiristysmomentti on kokoonpanijan välttämättömät ohjenuorat. Huomioi, että johtimet eivät saa jäädä puristuksiin tai hankaukseen.

Kierrelukite on välttämättömyys.

Kierrelukite on välttämättömyys.

Johdot taitetaan nätisti pohjalevyn aukoista sisään.

Johdot taitetaan nätisti pohjalevyn aukoista sisään.

Sytytyspuolan molemmat johtimet on juotettava kiinni. Opettele oikea juotostekniikka harjoittelemalla johonkin muuhun kohteeseen. Ns. kylmäjuotoksia ei saa syntyä, sillä ne saattavat aiheuttaa ylimääräistä vastusta (resistanssia) ja tuottaa siten jännitehäviöitä. Kaikki juotosliitoksen osat on lämmitettävä kunnolla kolvin kärjellä. Onnistuneen juotoksen tuntomerkki on juotoksen kiiltävyys.

Sytytyspuolan johtimet on juotettava kiinni.

Sytytyspuolan johtimet on juotettava kiinni.

Käytettävissämme ei ollut ihan Suzukin väristandardien ja tarvikejohtosarjamme värien mukaisia johtimia. Oleellista kuitenkin on dokumentoida värit mopoyksilön omaan sähkökaavioon.

Kytkennät on esitetty seuraavassa. Alleviivattu on itse tarvittaessa tehty välijohto ja sen väri. Värikoodit sähkökaaviosta. Valopuolan toinen käämipiiri (vihreä johdin) kytkettiin ja vedettiin akkukotelolle asti pitkällä mustalla johtimella myöhempää käyttöä (6V -> 12V muutos) varten.

  • Sytytyspuola (primääripuola), 2 johdinta
    • Maadoitus: B/W -> B/W
    • Sytytys/CDI: R -> B/Y
  • Valopuola, 3 johdinta
    • Valot: W -> Y -> Y/W
    • G -> B

Käytimme yhden neliömillimetrin johtimia. Älä käytä liian ohuita johtimia jännitehäviöiden ja johdon ylikuormituksen välttämiseksi ja käytä aina kutistesukkaa suojaamaan liitoksia (juotokset ja abikoliitokset). Sähkömiehen teippi on se huonompi vaihtoehto, sillä ajan myötä se voi purkautua auki. Tehokas kuumailmapuhallin voi sulattaa puolien käämien eristeitä, joten käyttele sitä kohdennetusti ja varoen. Säädettävän lämpötilan puhallin oikeaan kutistesukkalämpötilaan säädettynä (vaihtelee sukkatyypeittäin, 120 astetta Celsiusta on hyvä aloituslämpötila) on tässä erityisen hyvä apu.

Ohuet kutistesukat johtimiin

Ohuet kutistesukat johtimiin

Kutistus kuumailmapuhaltimella. Varo sulattamasta puolien käämien eristeitä!

Kutistus kuumailmapuhaltimella. Varo sulattamasta puolien käämien eristeitä!

Tässä vaiheessa ennen pohjalevyn asennusta puhdistimme magneeton puolen liuotinpesulla, kuivasimme ja tarkistimme kampiakselin ja vaihdepolkimen stefat ja kokeilimme molempien akselien välykset. Kaikki oli ok, kuin vasta tehdyn koneremontin jäljiltä.

Liuotinpesty magneeton puoli.

Liuotinpesty magneeton puoli.

Kampiakselin välyksen testausta.

Kampiakselin välyksen testausta.

Kierrelukitetta laitettiin myös pohjalevyn ruuveihin.

Kierrelukitetta laitettiin myös pohjalevyn ruuveihin.

Leveää kutistesukkaa johtonipulle.

Jälleen kutistesukkaa johtimille ja nyt leveämpää kutistesukkaa johtonipulle.

Puhjalevy paikoillaan. Musta johto tulee valopuolalta ja on tulevaisuuden 6V - 12V muutosta varten.

Puhjalevy paikoillaan ja kutistesukat kutistettu. Musta pitkä johto tulee valopuolan toisesta käämistä ja on tulevaisuuden 6V – 12V muutosta varten. Kuvassa ei näy magneeton läpiviennin suojakumi, joka toki tulee laittaa paikoilleen.

Vauhtipyörä kiinnitetään huolellisesti puhdistettuun akseliin kohdistamalla vauhtipyörän kiilaura tarkasti kiilaan ja yksinkertaisesti painamalla tasaisesti niin pitkälle kuin se menee ja kiristämällä loppuun mutterin avulla. Jos sovite on erityisen tiukka, voi käyttää hiukan korkean viskositeetin vaseliinia akselilla ja lämmittää vauhtipyörää. Ulosvetäjän voi kiertää paikoilleen sen pultti irroitettuna ja lyödä kumivasaralla tai metallivasaralla puupalikka välissä vauhtipyörä sovitteeseen, ks. artikkeli ”Moottorin kokoaminen 3- magneeton puoli”.

Kiinnityksen jälkeen on muistettava kokeilla, että vauhtipyörä on paikoillaan aksiaali- ja radiaalisuuntaan ja pyörii hankaamatta puolien metalliosiin.

Vauhtipyörä paikoilleen ja paikallaolon kokeilu.

Vauhtipyörä paikoilleen ja paikallaolon kokeilu.

Kone kannattaa käynnistää ilman magneeton koppaa ja katsoa pyöriikö vauhtipyörä vemppumatta ja täristämättä. PeeVeli Lähti käyntiin ensipolkaisulla.

Pyörityskoe ilman magneeton koppaa.

Pyörityskoe ilman magneeton koppaa.

Saimme käyttöömme mainion Fluke 175 TRMS -mittarin, jolla säröytyneitä vaihtojännitteitä voi mitata luotettavasti. Mittasimme mopon käynnissä ollessa ulostulojännitteet valopuolasta ilman jännitteensäädintä kuormittamattomana (ilman valoja tms.) sekä sen kanssa. HUOM: ilman jännitteensäädintä ei kannata laittaa valoja päälle, etteivät polttimot kärähdä.

Jännite puolalta oli n. 1/4 kaasulla reilut 13VAC ilman säädintä ja reilut 7VAC sen kanssa. Kovilla kierroksilla jännite nousi ilman säädintä vielä useita voltteja, joten puolassa on kyllä potkua – ja jännitteen säädin on todella tarpeen. Testasimme lopuksi alkuperäisen 6V jännitteensäätimen kanssa myös valot, jotka paloivat nyt kirkkaammin ja vilkkumatta.

Vaihtojännite rungon ja Y/W johtimen väliltä kuormittamattomana

Vaihtojännite rungon ja Y/W johtimen väliltä kuormittamattomana ilman jännitteensäädintä. HUOM: älä laita valoja päälle ilman jännitteensäädintä, sillä ne voivat kärähtää!

Vaihtojännite rungon ja Y/W johtimen väliltä jännitteensäätimen leikkaamana

Vaihtojännite rungon ja Y/W johtimen väliltä jännitteensäätimen leikkaamana

Lopuksi laskettiin kuminen läpiveintisuoja paikoilleen, laitettiin magneeton koppa kiinni magneeton tiivistys huolellisesti varmistaen sekä rasvattiin vaihdepolkimen akseli vaseliinilla ruostumisen estämiseksi ja kiinnitettiin poljin.