Aihearkisto: Työmenetelmät

LED valot mopoon


Katso ledien yleisestä tekniikasta ja käsitteistä sivulta ”Sähköoppia mopoilijalle – leditekniikkaa”.

PeeVelin valosähköillä on kehityskaari 6 VAC -> 12 VAC -> 12 VDC. Tämän yksilön polttimoiden alkuperäiset 6V kantatyypit ovat:

  • Etuvalo pitkät/lyhyet: 6V 15/15 W BA20d
  • Takavalo: 6V 5 W tube S8 39mm
  • Jarruvalo: 6V 10 W
  • Mittarivalo: 6V 3 W T10 lasikanta

Nämä vaihdettiin 12 V polttimoiksi aikanaan:

  • Etuvalo pitkät/lyhyet: 12V 25/25 W BA20d
  • Takavalo: 12V 5 W tube S8 39mm
  • Jarruvalo: 12V 10 W
  • Mittarivalo: 12V 3 W T10 lasikanta

Seuraavassa on esitelty kokeiluun otetut valmiit ledipolttimot yhteenvetona taulukossa ja kuvina. Suomalaisissa kaupoissa ledipolttimot ovat melkoisen hintavia. Päätimme kokeilla, mihin kiinalaisista ledipolttimoista ja eBay:n niitä toimittavista kaupoista on. Alla olevat tekniset tiedot ovat ilmoitettuja, ts. peräisin eBay:n myynti-ilmoituksista. Virrat mitattiin yleismittarilla ja teho laskettiin kaavalla P = U * I. Syöttöjännite mitattiin myös yleismittarilla, jotta saataisiin oikea teholukema ja se oli 12,0 VDC

Takavalo Jarruvalo Mittarivalo Etuvalo 6 W Etuvalo 12 W
Tyyppi Festoon socket, DA36 mm Festoon socket T10 COB, lasikantaan sopiva, alumiininen kotelo lediosassa BA20D, alumiininen jäähdytysripa, polttimossa ei merkintöjä, eBay kohdekuvauksessa merkintä: ”NAOM2S-80/W 5J200440”, lähi- ja kaukovalo BA20D, alumiininen jäähdytysripa, polttimossa merkintä ”M2S-80/W 6B266543”, lähi- ja kaukovalo
Led 3 x SMD 5050 6 x SMD 5050 1 kpl (tyyppiä ei ilmoitettu) 2 kpl (tyyppiä ei ilmoitettu) 2 kpl (tyyppiä ei ilmoitettu)
Mitat 36 x 8 mm 36 x 13 x 8.5 mm (ei ilmoitettu) Noin 66 x 34mm Noin 66 x 34mm
Valovirta 50-60 lm 50-60 lm (ei ilmoitettu) 800 lm 800 lm
Värisävy 6000 K Valkoinen 6000 K, ”xenon” Valkoinen 6000 K Valkoinen 6000 K Valkoinen 6000 K
Valaistuskulma 180 astetta 180 astetta (ei ilmoitettu) (ei ilmoitettu) (ei ilmoitettu)
Ilmoitettu käyttöikä 50000 h 50000 h (ei ilmoitettu) (ei ilmoitettu) (ei ilmoitettu)
Lämpötila-alue (ei ilmoitettu) (ei ilmoitettu) (ei ilmoitettu) -40C~ + 105C -40C~ + 105C
Jännite 12 VDC 12 VDC 12 VDC 9-80 VDC 6-80 VDC
Polariteettivaatimus (napaisuus) Kyllä Kyllä Kyllä Kyllä Kyllä
Tehonkulutus (ei ilmoitettu) 1 W 1 W 6 W 6 W x 2
Mitattu virta ja laskettu tehonkulutus 12 V syöttöjännitteellä 20 mA, 0,24 W 40 mA, 0,48 W 30 mA, 0,36 W 250 mA, 3 W (lyhyet), 270 mA, 3,24 W (pitkät) 410 mA, 4,92 W (lyhyet), 410 mA, 4,92 W (pitkät)
Hinta ostohetkellä postikuluineen ja tulleineen 1,79 € / 2 kpl (0,895 €/kpl) 1,61 € / 2 kpl (0,805 €/kpl) 2,65 € / 2 kpl (1,33 €/kpl) 3,98 € / kpl 4,73 € / kpl
Ilmoitettu toimitusaika Suomeen 10…30 vrk 10…30 vrk 30…60 vrk 15…30 vrk 15…30 vrk
Toteutunut toimitusaika Suomeen 8 vrk 13 vrk 15 vrk 11 vrk 14 vrk
Hakulinkki eBay hakulinkki vastaaville eBay hakulinkki vastaaville eBay hakulinkki vastaaville eBay hakulinkki vastaaville eBay hakulinkki vastaaville

Takavalo

Tämän toimittajan versiossa näkyy elektroniikkaa piirilevyn palan toisella puolella.

Tämän toimittajan versiossa näkyy elektroniikkaa piirilevyn palan toisella puolella.

Kokeeksi tilattiin 3-ledisiä polttimoita myös toisesta eBay-kauppiaalta. Pakkaus oli parempi.

Kokeeksi tilattiin 3-ledisiä polttimoita myös toisesta eBay-kauppiaalta. Pakkaus oli parempi.

Toisen toimittajan polttimoissa ei ollut elektroniikkaa piirilevyn toisella puolella. Polttimot olivat tehtaan jäljiltä hauskasti vielä kiinni toisissaan ja piti napsauttaa irti.

Toisen toimittajan polttimoissa ei ollut elektroniikkaa piirilevyn toisella puolella. Polttimot olivat tehtaan jäljiltä hauskasti vielä kiinni toisissaan ja piti napsauttaa irti.

Takavaloksi aiottu 3-ledinen polttimo kulutti 20 mA ja valoteho vaikutti riittävältä.

Takavaloksi aiottu 3-ledinen polttimo kulutti 20 mA ja valoteho vaikutti riittävältä.

Jarruvalo

Jarruvaloon ajateltiin ostaa takavaloa enemmän tehoa ja sitä kautta valovirtaa. Tämä tuli ledien määrän tuplauksen kautta.

Jarruvaloksi ajatellut tulivat ohuesti pehmustetussa muovipussissa.

Jarruvaloksi ajatellut tulivat ohuesti pehmustetussa muovipussissa.

Kuusi lediä mahtuu lähes normilasiputken leveyteen. Ledien tyyppi näyttää merkintöjen perusteella samalta kuin muissa vastaavissa polttimoissa.

Kuusi lediä mahtuu lähes normilasiputken leveyteen. Ledien tyyppi näyttää merkintöjen perusteella samalta kuin muissa vastaavissa polttimoissa.

Jarruvaloksi aiottu 6-ledinen kulutti 40 mA

Jarruvaloksi aiottu 6-ledinen kulutti 40 mA, mikä on tarkasti tuplavirta 3-lediseen takavaloon verrattuna.

Ledivalot_18

Valoteho riittää jo pöytätestissä jarruvalolle varmasti.

Mittarivalo

Mittarivaloomme tarvittiin lasikantapolttimoon sopiva ledipolttimo.

Mittarivaloksi aiottu T10 kantainen polttimo kulutti 30 mA ja valovirta varmasti riittävä.

Mittarivaloksi aiottu T10 kantainen polttimo kulutti 30 mA ja valon määärä (valovirta) varmasti riittävä.

Etuvalo 6W

6 W etuvalo tuli pahviaskissa ja ohuessa muovipussissa.

6 W etuvalo tuli pahviaskissa ja ohuessa muovipussissa.

BA20D kanta on toteutettu hyvin. Jäähdytysripa on muhkea näky ledien kokoon nähden.

BA20D kanta on toteutettu hyvin. Jäähdytysripa on muhkea näky ledien kokoon nähden.

Ledivalot_9 Ledivalot_11 Ledivalot_12

Ledivalot_23 Ledivalot_24

Lyhyiden valojen virrankulutus on 250 mA.

Lyhyiden valojen virrankulutus on 250 mA.

Lyhyet

Lyhyet

Pitkät

Pitkät

Pitkien valojen virrankulutus on 270 mA.

Pitkien valojen virrankulutus on 270 mA.

 

Etuvalo 12W

12 W lamppu tuli mystisesti Virolaisesta osoitteesta tai sen kautta.

12 W lamppu tuli mystisesti Virolaisesta osoitteesta tai sen kautta.

Alumiiniripa oli hieman erilainen...

Alumiiniripa oli hieman erilainen 6 W polttimoon verrattuna…

...kuten elektroniikankin toteutus.

…kuten elektroniikankin toteutus.

Lyhyet

Lyhyet

Pitkät

Pitkät

Virrankulutus lyhyillä oli 410 mA

Virrankulutus lyhyillä oli 410 mA

Virrankulutus pitkillä oli sama kulutus kuin lyhyillä.

Virrankulutus pitkillä oli sama kulutus kuin lyhyillä.

Asennus mopoon ja testit

Polttimo sopi hyvin kantaan.

Polttimo sopi hyvin kantaan.

Myöskään mahtuminen umpioon ei tuottanut ongelmia.

Myöskään mahtuminen umpioon ei tuottanut ongelmia.

Lyhyet

Lyhyet

Pitkät

Pitkät

Mittarivalon vaihtamiseksi riitti aluslevyn kolmen kiinnitysruuvin irroitus. Ledipolttimo oli leveämpi ja hieman ahdas mutta meni tarpeeksi syvälle mittariin koteloon valaistakseen mittaritaulun.

Hehkulamppu on kirkas mutta vie tehoa ja säteilee hieman turhaankin joka suuntaan.

Hehkulamppu on kirkas mutta vie tehoa ja säteilee hieman turhaankin joka suuntaan.

Ledivalo säteilee oikeaan suuntaan

Ledivalo säteilee oikeaan suuntaan

Valoteho on täysin riittävä mittarin valaisemiseen (kuva otettu päivänvalossa)

Valoteho on täysin riittävä mittarin valaisemiseen (kuva otettu päivänvalossa)

Takalyhdyn polttimoita asennettaessa kielekkeitä piti taivuttaa vähän, jotta ledipolttimot istuisivat jämäkästi eivätkä lähtisi pyörimään tärinässä. Jälkiviisaana tilaisimme 39 mm polttimot 36 mm sijasta.

Taka- ja jarruvalot asennettuna. Muista napaisuus; jos valo ei toimi, vaihda toisin päin!

Taka- ja jarruvalot asennettuna. Muista napaisuus; jos valo ei toimi, vaihda toisin päin!

Takavalo

Takavalo

Taka- ja jarruvalo

Taka- ja jarruvalo

Akun jännite valojen ollessa pois ja mopon ollessa sammutettuna.

Akun jännite valojen ollessa pois ja mopon ollessa sammutettuna.

Etuvalo, takavalo, jarruvalo ja mittarivalo päällä, mopo edelleen sammutettuna. Ledipolttimot pudottavat jännitettä vain 0,2 V.

Etuvalo, takavalo, jarruvalo ja mittarivalo päällä, mopo edelleen sammutettuna. Ledipolttimot pudottavat jännitettä vain 0,2 V.

Takavalo

Takavalo

Taka- ja jarruvalo.

Taka- ja jarruvalo.

Takavalo

Takavalo

Ledivalot_39

Jarruvalon ero pelkkään takavaloon on riittävä

 

Sekä etu- että takalyhdyn sävyt ovat ok. Etuvalon keilassa lähietäisyydelle on toivomisen varaa.

Lyhyet

Lyhyet

Pitkät

Pitkät

Ledivalot_44 Ledivalot_45

 

Yhteenveto

Tuotteiden ja toimituksen laatu yllätti positiivisesti. Toimitukset hoituivat luvattua nopeammin. Tulliin ei jäänyt yksikään. Kaikki polttimot toimivat moitteetta. 6- ja 3 -ledisten putkipolttimoiden korvaajien tehonkulutukset olivat tarkasti ledien määrän mukaiset.

Valon määrät eli valovirrat ovat täysin riittävät verrattuna vastaaviin hehkulankapolttimoihin. Sävyssäkään ei ole valittamista, vaikka ero on aivan selvä (ledivalo on sävyltään huomattavasti kylmempi).

Muutamia puutteitakin havaittiin. Mitattu sähkötehon kulutus etenkin etuvaloissa herätti kummastusta. eBay-kauppojen wattilukemat (6 W, 12 W) jäivät kauaksi testijännitteellä saaduista kulutuksista. Samoin myöskin jarruvaloksi aiotussa 1 W polttimossa kulutus oli 0,48 W. Oletamme tämän siis johtuvan siitä, että ledipolttimoiden jännitealue on paljon suurempi kuin käyttämämme 12 V ja ilmeisesti on kyse tehosta maksimijännitteellä. Tämä kuitenkin on hyvä asia projektillemme, sillä haluamme pienentää tehonkulutusta. Mitattu kokonaistehonkulutus ledeillä oli vain 14% laskennallisesta tehonkulutuksesta 12 V hehkulankapolttimoilla.

PeeVelin laskennallinen akkukesto (akku 2,3 Ah) moottorin ollessa sammutettuna ja takavalo, mittarivalo ja etuvalo päällä on ledipolttimoilla 5 h. Tosin varauksen purkautuessa ja akkujännitteen pudotessa valojen käyttökelpoisuus tietenkin putoaa jo ennen kuin ledivalot sammuvat. Joka tapauksessa ero on valtava. Vastaava luku olisi 6 V hehkulankapolttimoilla 1,2 h ja 12 V hehkulankapolttimoilla vain 0,8 h.

6 W etuvalopolttimo (mitattu 3W) lämpeni testeissä (kesäkelissä, mopon seisoessa) yllättävän kuumaksi. Pitää seurata, miten kanta ja umpio kestävät tämän.

Pieni miinus tulee myös hieman turhan ohuista pakkauspusseista. Lisäksi PV:n suorakaidelyhdyn valokeilassa olisi toivomisen varaa, hehkulankapolttimolla on parempi. Lisäksi hieman arveluttavaa on, miten paljas (suojalakkaamaton) polttimoelektroniikka kestää kosteat olosuhteet. Lakkaaminen johtamattomalla elektroniikkalakalla saattaisi olla viisasta.

6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – mittaukset


6V -> 12 V muutoksen artikkelisarjan aikaisemmat artikkelit järjestyksessä:

  1. Sytytyspuolan ja valopuolan vaihto
  2. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – esivalmistelut
  3. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – osat
  4. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – peruskytkennät: jännitteensäädin/tasasuuntaaja, akku

Seuraavassa on toteutettu sähkömittauksia PeeVelistä liittyen 6V -> 12V muutokseen mutta mittaukset ovat toki käyttökelpoista tietoa muuhunkin, mm. mopon sähköjärjestelmän toiminnan ymmärtämiseen.

Mittailu kannattaa, sillä se on kehittävää. Erästä henkilöä lainaten: ”mittailu on kehittävää puuhaa, varsinkin jos haluaa oikeita mittaustuloksia”.

Sähkötekniikan perusteita löytyy sivulta ”Sähköoppia mopoilijalle”. Magneeton ja sytyksen teoriaa teoriaa taas sivulta ”Sähköoppia mopoilijalle –  magneeton ja sytytyksen teoriaa”. Sähkömittauksista ja vioista löytyy tietoa artikkelista ”Sähkömittauksia ja -vikoja”. Yleismittarin käytöstä löytyy tietoa Opetushallituksen linkistä ”Yleismittarit ja niiden käyttö”. Hyvät oskilloskooppiartikkelit suomeksi ovat harvassa. Hyvä artikkelit englanniksi ovat ”How To Use an Oscilloscope” ja ”Oscilloscope How-To”.

Kesäinen mittauslaboratorio

Kesäinen mittauslaboratorio

1) Välineet

Näissä mittauksissa käytettiin perinteistä yleismittaria sekä digitaalista oskilloskooppia.

  • TRMS yleismittari Fluke 179
  • Oskilloskooppi Tektronix TDS1002B,  tallentava kaksikanavainen 60 MHz 1 GS/s digitaalioskilloskooppi USB tallennusominaisuudella
  • Oskilloskoopin passiivinen 10x/1x mittapää P2220 (taajuus: 200 MHz/6M Hz, resistanssi: 10 Mohm/1Mohm, kapasitanssi: 16 pF/95 pF)

2) Vaihtosähköpiirin magneeton valopuola – jännitteensäädin mittaus

Valopuolan yleismittarimittaukset tehtiin puolien vaihdon yhteydessä. Jännite valopuolalta oli n. 1/4 kaasulla reilut 13 VAC ilman 6V jännitteensäädintä ja reilut 7 VAC sen kanssa. Kovilla kierroksilla jännite nousi ilman säädintä vielä useita voltteja, joten 12V järjestelmä oli mahdollinen toteuttaa.

Oskilloskoopilla tutkittiin uuden valopuolan tuottamaa aaltomuotoa sen molemmista johtimista.

Valopuolan mittaus oskilloskoopilla maan (runko) ja itse tehdyn puolan johdon (väri B) välistä

Valopuolan mittaus oskilloskoopilla maan (runko) ja itse tehdyn puolan johdon (väri B) välistä

Oli epäilys, että tehollinen osuus aaltomuodosta on hyvin lyhyt ja laadukaskaan yleismittari ei ehdi sitä näkemään. Ohessa on kuva mittauksesta kuormittamattomalta valopuolalta ilman jännitteensäädintä, tyhjäkäynnillä. Yhden Y-akselin suuntaisen ruudun ollessa 10V, huipusta huippuun (peak-to-peak, pp) jännite on reilut 40 Vpp. Yhden X-akselin suuntaisen ruudun ollessa 5 ms, täysi aallon jaksonaika (T, yksikkö sekuntia) on n. 10 ms ja siten taajuus f = 1/T = 1/0,01s = 100 Hz. Taajuus vaihtelee luonnollisesti paljon kierrosluvun koko ajan muuttuessa. Oskilloskooppi laskee ja näyttää taajuuden myös itse ja kuvan tallennushetkellä taajuus oli n. 92 Hz.

Aaltomuoto on kaukana täydellisestä siniaallosta ja etenkin halvat, ei True RMS -yleismittarit ovatkin vaikeuksissa tällaisen muodon kanssa. Yksittäisen piikin pituus on n. 2,5…3 ms ja siksi tehollinen osuus on hyvin lyhyt yleismittarin mitatattavaksi.

Oskilloskooppimittaus valopuolalta ilman jännitteen säädintä, tyhjäkäynnillä.

Oskilloskooppimittaus valopuolalta, ilman jännitteensäädintä, kuormittamattomana, tyhjäkäynnillä.

Mopon kierroksia nostamalla taajuus luonnollisesti kasvaa, kun magneeton vauhtipyörä pyörii nopeammin ja magneettikenttä siksi ”leikkaa” puolan johtimia useammin aikayksikössä.

Valopuolan mittaus kuormittamattomana, puolikaasu

Oskilloskooppimittaus valopuolalta ilman jännitteensäädintä, kuormittamattomana, puolikaasu

Laitoimme mittauksen ollessa päällä valot päälle ja painoimme myös jarrupoljinta. Kuorman kanssa huipusta huippuun arvo putoaa radikaalisti. Samalla tosin aaltomuotokin järkevöityy.

Oskilloskooppimittaus valopuolalta, ilman jännitteen säädintä, valot ja jarruvalo päällä

Oskilloskooppimittaus valopuolalta ilman jännitteen säädintä, valot ja jarruvalo päällä

Energiaa ei synny tyhjästä (ks. sivu ”Sähköoppia mopoilijalle”). Kuorman kasvaessa valot imevät energiaa magneetosta ja magneettikentän ylläpitoon tarvittava lisäenergia jarruttaa magneettoa. Kierrokset laskevat ja bensiiniä kuluu.

3) Tasasähköpiiri säätimen jälkeen: akun latausjännitteen mittaus ilman akkua

Disclaimer: säädintä ja sähköjärjestelmää ei välttämättä ole tehty kestämään käyttöä ilman akkua. Säätimen toiminta saattaa vaatia sen, että akku on tasaamassa nopeita jännitteen muutoksia. Muut sähköjärjestelmän osat saattavat vioittua akuttoman käytön takia.

Otimme tietoisen riskin ja tutkimme akun latausjännitettä jännitteensäädin/tasasuuntaaja jälkeen suoraan latausjohdosta ilman akkua sekä yleismittarilla että oskilloskoopilla.

Yleismittarimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Yleismittarimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Yleismittarin DC-mittauksella saatiin tulos n. 4-5 V, mikä herätti ensin huolta siitä, onko jotain pielessä säätimessä ja/tai kytkennöissä. Kyseisellä jännitteellä kun akkua ei speksien mukaan ladata. Syyksi  arveltiin edellä mainittua yleismittarin hitautta ja siksi tehtiin oskilloskooppimittaus. Jos yleismittarissa on peak-to-peak tai peak-hold toiminnolla, sillä saa ehkä paremmin huippuarvoja esille. Huiput ovat ne, jotka lataavat akkua. Pitää muistaa että sellaisen siniaallonkin, jonka huiput  ovat 14 V, mittarin näyttämä tehollisarvo on vain noin 10 V.

Oskilloskooppimittaus DC-moodissa (DC coupling) samoista pisteistä paljasti erikoisen aaltomuodon. Yleismittari ei pysy tällaisen perässä. Saadusta käyrästä pitäisi laskea pinta-ala ja sitä kautta tehollisarvo. Tämä on hieman haastavampaa matematiikkaa. Tehollisarvo saattaa hyvinkin olla 4-5 V luokkaa, kun aaltomuoto käy jopa negatiivisen puolella.

Oskilloskooppimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Oskilloskooppimittaus latausjohdosta ilman akkua tyhjäkäynnillä

Pitää myös muistaa, että akun ollessa irroitettuna mittausta häiritsee todennäköisesti moni asia. Tasasuuntauksen (tai mikä siellä säätimessä sitten onkaan; tyristori, zener-diodi, tms.) ’eristettynä’ olevaan  kelluvaan johtoon indusoituu varmasti häiriöitä mopon muista sähkösysteemeistä, valopuolan syöttämistä johdoista jne. Oskilloskoopin mittapää (probe) on niin suuri-impedanssinen että se ei ota virtaa ja siis kuormita käytännössä yhtään säädintä. Toisin sanoen, säädin ei näe mitään kuormaa.

Jotta mittaukseen saataisiin jotain tolkkua, akun tilalle pitää kytkeä kuormaa, joka tasoittaa haamujännitteet pois ja johdossa näkyy vain mitä säädin oikeasti antaa ulos. Esim. 150-200 ohmin vastus on sopiva. Laatikostamme löytyi 269 ohmin vastus ja kytkimme sen akun tilalle. Varo oikosulkemasta akun johtoja!

269 ohm vastus akun tilalla oskilloskooppimittauksessa.

269 ohm vastus akun tilalla oskilloskooppimittauksessa. Varo oikosulkemasta akun johtoja!

Nyt haamujännitteet katosivat ja alettiin saamaan järkevämpää aaltomuotoa, joka oli mm. kokonaisuudessaan positiivisella puolella Y-akselia. Kuvassa olevien piikkien huiput ovat nyt ne aaltomuodon osat, jotka oikeasti lataavat akkua. Akun sisäinen vastus on kuitenkin pienempi kuin 269 ohm testivastuksemme, joten latausjännite ei normaalikäytössä ole näin suuri.

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, tyhjäkäynti

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, tyhjäkäynti

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, puolikaasu

Oskilloskooppimittaus 269 ohm vastuksen yli sen ollessa akun tilalla, puolikaasu. Huomaa skoopin automaattinen alueen muutos jännitteen noustessa; nyt yksi pystyruutu Y-akselilla on 10V.

3) Akun jännitteen (latausjännite) mittaus akun ollessa kytkettynä

Mittasimme seuraavaksi akun yli olevan jännitteen (latausjännitteen) tyhjäkäynnillä ja puolikaasulla akun ollessa normaalisti kytkettynä sähköjärjestelmään. Edelleenkään, akku ei syöttänyt mitään laitetta, ts. se oli ilman kuormaa.

Tyhjäkäynnillä akku ei liiemmin lataudu, sillä jännite jää alle akun latausspeksin. Tämä tietenkin riippuu siitä, mihin tyhjäkäyntikierrokset on säädetty.

Yleismittarimittaus akun yli, tyhjäkäynti, ei kuormaa

Yleismittarimittaus akun yli, tyhjäkäynti, ei kuormaa

Oskilloskooppimittaus akun yli, tyhjäkäynti, ei kuormaa

Oskilloskooppimittaus akun yli, tyhjäkäynti, ei kuormaa

Jo neljänneskaasulla jännite nousee selvästi. Latausta tapahtuu varmasti viimeistään puolikaasulla.

Yleismittarimittaus akun yli, puolikaasu, ei kuormaa

Yleismittarimittaus akun yli, puolikaasu, ei kuormaa

Oskilloskooppimittaus akun yli, puolikaasu, ei kuormaa

Oskilloskooppimittaus akun yli, puolikaasu, ei kuormaa

Tutkimme myöhemmin akun latausvirtaa eri kuormilla ja päivitämme tulokset tähän artikkeliin.

Seuraavaksi on vuorossa mopon käyttöä tällä sähköjärjestelmällä ja lopulta valosähköjärjestelmän muutos, mikä tarkoittaa myös muutoksia tarvikejohtosarjaamme. Näistä artikkeli myöhemmin.

6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – peruskytkennät: jännitteensäädin/tasasuuntaaja, akku


6V -> 12 V muutoksen artikkelisarjan aikaisemmat artikkelit järjestyksessä:

  1. Sytytyspuolan ja valopuolan vaihto
  2. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – esivalmistelut
  3. 6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – osat

Tässä artikkelissa käydään läpi 6V -> 12V muutoksen tärkeimmät peruskytkennät: jännitteen säädin/tasasuuntaaja ja akku. Nämä kytkennät kannattaa tehdä ja mitata kattavasti ja kokeilla ennen kuin kannattaa alkaa isompia muutoksia tekemään, esim. johtosarjaan. Samalla rakentuu ymmärrys, miten järjestelmä toimii. Alla olevat kytkennät ovat siis tavallaan koekytkentöjä, tosin tarkoitus oli saada mopo näilläkin ajettavaan kuntoon. Hyvällä esivalmistelulla kytkennät oli todella helppo ja nopea tehdä, aikaa meni vain n. puoli tuntia.

Kaikki kytkennät perustuvat siis vuosimallin 2000 sähkökaavioon, jota sovellamme. Täysin kaaviota PeeVelin sähköjärjestelmä ei siis identtisesti tule noudattamaan. Kannattaa myös huomioida, että akku ei vielä alla olevalla kytkennällä syötä mitään mopon sähkölaitetta.

Akku, jännitteen säädin/tasasuuntaaja sekä polttimot

Akku, jännitteen säädin/tasasuuntaaja sekä 12V polttimot

6V polttimoita on turha tuhota, joten ensiksi vaihdettiin etu- ja takavalon sekä jarru- ja mittarivalon polttimot 12V versioihin. Etuvaloksi laitettiin BA20d 12V 25/25W (Motonet 43-0982) ja takavaloksi SV8,5 12V 5W (Motonet 43-2844), jarruvaloksi SV8,5 12V 10W (Motonet 43-2854), mittarivaloksi T10 12V 3W (Biltema 35-15256).

Tulevaisuudessa, kun saatiin 12 VDC valosähköt laitettua, tutkittiin ledivalomahdollisuuksia. (ks. sivu ”Sähköoppia mopolijalle – leditekniikkaa” ja artikkeli ”LED valot mopoon”).

Etuvalon polttimon vaihto

Etuvalon polttimon vaihto

Taka- ja jarruvalopolttimoiden vaihto

Taka- ja jarruvalopolttimoiden vaihto

Seuraavaksi otettiin vanha 6V jännitteensäädin irti ja irroitettiin johtimet sen liittimestä. Johtoja ei todellakaan tarvitse katkaista. Pienellä talttapäämeisselillä kielekettä painamalla ne lähtevät nätisti liittimestä samalla johtimia vetäen ulos. Liittimet olivat sattumalta myös sopivat suoraan uuden jännitteensäätimen/tasasuuntaajan pinneihin, vain sukitus piti tehdä.

Vanha 6V jännitteensäädin irti

Vanha 6V jännitteensäädin irti

Johtojen pinnien irroitus vanhan jännitteensäätimen liittimestä

Johtojen pinnien irroitus vanhan jännitteensäätimen liittimestä

Valopuolaltamme tulee kaksi johtoa värikoodeiltaan johtosarjan Y/W sekä itse tekemämme B, ks. artikkeli ”Sytytyspuolan ja valopuolan vaihto”. Johtosarjassamme on pari ylimääräistäkin Y/W -johtoa ja nämä jätettiin nyt kytkemättä ja vain päät suojattiin oikosulkujen varalta.

Teimme akulle latausjohdon valmiista sulakepidinjohdosta (Motonet 48-1767) väriä R ja akun miinusnavan ja rungon välisen maajohdon väriä B. Käytettävissä ei ollut suoraan uuteen säätimeen sopivaa liitintä, joten kytkennät tehtiin pinnitasolla.

Projektin käytäntöjen mukaan kytkennät tehtiin huolella ja kaikki sukitettiin sekä johdintasolla että myös liittiminä. Roiskuuhan se vesi koekytkentöihinkin. Tässä esikytkentävaiheessa johtimiin jätettiin pituusvaroja myöhempää modifiointia varten.

Johtojen teko ja sukitus

Johtojen teko ja sukitus

Kutistesukkien kutistus kuumailmapuhaltimella

Kutistesukkien kutistus kuumailmapuhaltimella

6V 12V muutos_9

Johtimet kaavion mukaisesti kytkettynä

Akulle tulevat johdot päätettiin tuoda akku/työkalukotelon alapuolelta.

Myös säätimen liitin sukitettiin ja nippusiteellä tehtiin vedonpoistaja.

Myös säätimen liitin sukitettiin ja nippusiteellä tehtiin vedonpoistaja. Ylimääräiset Y/W-johtimet vain suojattiin tässä vaiheessa.

Ennen akun kiinnittämistä kaikki säätimen kytkennät tarkistettiin vuosimallin 2000 kaaviota vasten ja mitattiin yleismittarin resistanssimittauksella kytkentöjen laadun varmistamiseksi. Akku oli etukäteen ladattu täyteen ja se kiinnitettiin lopuksi paikalleen ja mitattiin johdot kiinnitettynä ja jännitetaso oli normaali. Myös virtamittaus tehtiin akun miinusnavan ja rungon välistä mopo sammutettuna ja vuotovirtaa runkoon ei havaittu.

6V sähköjärjestelmän muuttaminen 12V järjestelmäksi – esivalmistelut


6V -> 12 V muutoksen artikkelisarjan aikaisemmat artikkelit järjestyksessä:

  1. Sytytyspuolan ja valopuolan vaihto

Puolien vaihdon yhteydessä päätettiin muuttaa vaihtosähköinen (AC) 6V sähköjärjestelmä 12V järjestelmäksi. 12V järjestelmä on tehon lisäyksen lisäksi nykymaailmassa kätevämpi mahdollistaen moninaisemmat lisävarusteet.

Suunnitteluun ja teoriaan kannattaa hieman käyttää aikaa. Aiheesta on paljon mopofoorumeilla mutta tieto on usein hajallaan, kirjoitettu vaikeaselkoisesti ja mukana on jopa asiavirheitä. Varsinkin käsitteitä sekoitetaan. ”Mulla ainakin toimii” -sanonta ei aina tarkoita, että sähköjärjestelmä toimii täysin oikein tai ainakaan optimaalisesti ja on pitkäikäinen. Aiheeseen liittyvää sähköteoriaa löytyy sivuilta ”Sähköoppia mopoilijalle”, ”Sähköoppia mopoilijalle – magneeton ja sytytyksen teoriaa” ja artikkelista ”Sähkömittauksia ja -vikoja”.

Muutoksen 6V -> 12V voi toteuttaa monella tapaa. Artikkelisarja varmasti poikiikin kommentteja. Emme kiistele mielipideasioista. Tässä artikkelisarjassa esitetään yksi tapa, jonka pohjalla on tavoittelemamme toiminnallisuus:

  • 12 V sähköjärjestelmä valoille ja muille sähkölaitteille (sytytyksen ja äänimerkin sähköjärjestelmä ennallaan)
  • Sähkölaitteet magneettoa ja sytytystä sekä äänimerkkiä lukuunottamatta ovat tasasähköpiirissä
  • Akku energiavarastona ja sille luonnollisesti latauksen säätö. Akku on hyvä olla tasaamassa syöttöä eteenpäin sähkölaitteille ja vaikkapa pitkävalmiusaikaisen varashälyttimen tai USB-latauspistokkeen mahdollistaja.
  • Pääkytkimeksi virtalukko, joka sytytyksen lisäksi katkaisee valosähköjärjestelmän
  • Vesitiivis kytkentäkotelo, mihin tulee kytkentätilaa ja -paikat lisälaitteille edelleenkehitystä ja järjestelmän helppoa mittausta varten
  • USB latauspistoke
  • GPS/GPRS jäljitin, pienikokoinen ja vesitiivis, 12VDC syötöllä ja akkuvarmistuksella
  • Vesitiiviit ja oikein mitoitetut sulakesuojaukset oleellisiin paikkoihin

Sähkökaavio, jota mukaillen muutokset tehtiin on vuosimallin 2000 12V kaavio, mikä tuli ensin ymmärtää. Siitä seuraavassa. Tarkoitus on myös mitata sähköjärjestelmästä kaikki mahdollinen ja lisätä näin ymmärrystä siitä, miten se oikeasti toimii – ei vain teoriassa.

Suzuki PV sähkökaavio 2000

Suzuki PV sähkökaavio 2000, 12V, virtalukko, akku, käynnistyksen esto

Suzuki PV sähkökaavion 2000 virtapiirit ja niiden toiminta

Tasavirta

Vuosimallin 2000 sähkökaavion mukaan tasavirtapiirin toiminnalliset komponentit ovat tasasuuntaaja (tarkemmin sen diodisillan toisiopuoli), akku, virtalukko, vapaa-asennon  merkkivalo, vapaa-asennon kytkin, käynnistyksenestojärjestelmän ohjausyksikkö, etu- ja takajarruvalokytkimet, jarruvalo, äänimerkin kytkin, äänimerkki. Tasavirtapiirien energia tuotetaan valopuolalla, joka tuottaa tasasuuntaajan diodisillan ensiöpuolelle vaihtovirran.

Tasasuuntaaja syöttää akulle tasasuunnattua latausjännitettä ja vapaan merkkivalolle, jarruvalolle, äänimerkille sekä käynnistyksenestojärjestelmän ohjausyksikölle tasasuunnattua käyttöjännitettä. Syöttöjohtimessa akulle on johdon ylikuormitussuojana sulake. Virtalukko toimii tasasähköpiirin pääkatkaisimena, jonka takana ovat vapaa-asennon merkkivalo ja sen kytkin, jarruvalo ja sen molemmat kytkimet, äänimerkki ja sen kytkin sekä ohjausyksikkö.

Vapaan merkkivaloa ohjataan päälle/pois vapaa-asennon katkaisimella ja jarruvaloa etu- ja takajarrun kytkimillä, kun virtalukko on joko ”ON” tai ”LIGHT” -asennossa, eli kun virta on päällä sähköjärjestelmässä.

Ohjausyksikköön menee aina oranssilla johtimella jännite, kun kun virtalukko on joko ”ON” tai ”LIGHT” -asennossa ja sinisellä johtimella, kun vaihde ei ole vapaalla. Kun vaihde on vapaalla, vapaa-asennon katkaisin maadoittaa ohjausyksikön johdon, jolloin taas ohjausyksiköltä sinisestä johdosta putoaa jännite.

Akku toimii energiavarastona ja mahdollistaa käynnistyksenestojärjestelmän toiminnan ja äänimerkin ja jarruvalon myös silloin, kun mopo ei ole käynnissä ja siis magneetto ei tuota sähköä.

Vaihtovirta

Valojen vaihtovirtapiirin toiminnalliset komponentit ovat valopuola, virtalukko, valokatkaisin, etuvalo ja takavalo sekä nopeusmittarin valo. Valopuolalta tuodaan tasasuuntaajan lisäksi vaihtovirtaa myös virtalukolle, mikä toimii pääkytkimenä ja sen takana on valokatkaisin sekä etu- ja takavalot.

Kun virtalukko on ”LIGHT” -asennossa ja mopo on käynnissä ja magneetto siis tuottaa energiaa, mittarin valolle ja takavalolle syötetään koko ajan jännitettä ja valokatkaisimen ohjaamana samoin myös joko lyhyille tai pitkille valoille.

Vuosimallin 2000 sähkökaavion toinen vaihtovirtapiiri on sytytysvirtapiiri. Sen toiminnalliset komponentit ovat primääripuola, virtalukko, CDI-yksikkö, ja käynnistyksenestojärjestelmän ohjausyksikkö. Virtalukko toimii tässäkin piirissä pääkytkimenä ja maadoittaa sytytyspuolan jännitejohdon ”OFF” -asennossa. Myös käynnistyksenestojärjestelmän ohjausyksikkö maadoittaa saman johdon, jos käynnistymisen muut ehdot eivät toteudu. Virtalukon ”ON” ja ”LIGHT” -asennoissa primääripuolan tuottama vaihtojännite pääsee CDI-yksikölle, jos käynnistyksen esto ei sitä siis estä.

Sytytyspuolan ja valopuolan vaihto


Tästä artikkelista alkaa artikkelisarja, joka käsittelee 6V sähköjärjestelmän muutosta 12V järjestelmäksi.

Kokosimme aikanaan magneeton vanhoin osin, ks. artikkeli ”Moottorin kokoaminen 3- magneeton puoli”. Muutamaan kertaan projektin aikana tuli ilmi, että sähköenergian tuotto oli hieman riittämätöntä. Tämä on 6V sähköjärjestelmän PV:ssä yleinen ominaisuus mutta havaitsimme erilaisia vikoja, esim valojen himmeys ja normaalia suurempi ”vilkkuminen” oli aika selvä ongelma. Sytytyksen täydellisestä toimivuudesta ei kipinän voimakkuuksineen myöskään ollut täyttä varmuutta; oli epäilys, että kipinä on heikko. Siksi jälkeenpäin päätettiin vaihtaa sytystyspuola (primääripuola) ja valopuola.

Onnistuimme löytämään vielä Suzukin alkuperäiset puolat, vaikka niiden valmistus on tiettävästi lopetettu.

Suzukin alkuperäisosat herättävät aina tiettyä luottamusta.

Suzukin alkuperäisosat herättävät aina tiettyä luottamusta.

Mittasimme uudet puolat. Sähkömittauksista kannattaa katsoa artikkeli ”Sähkömittauksia ja -vikoja”, missä mm. oikeat mittaustavat ja -arvot.

Sytytyspuolan mittaus.

Sytytyspuolan mittaus.

Valopuolan mittaus valkoisesta johdosta.

Valopuolan mittaus valkoisesta johdosta.

Valopuolan mittaus vihreästä johdosta.

Valopuolan mittaus vihreästä johdosta.

Osat ja tarvikkeet:

Työkalut:

  • Perustyökalut: kuusiokoloavaimet, hylsyt ja vääntimet
  • Magneeton vauhtipyörän ulosvetäjä
  • Juotoskolvi
  • Yleismittari ja mittapäät

Purkaminen

Ensiksi irroitettiin vaihdepoljin ja magneeton koppa varoen rikkomasta tiivistettä. Koppa oli normaalin likainen vetoakselin puolelta mutta magneeton puoli oli siisti. Koneremontissa uuteen vaihdetussa vaihdeakselissa oli pintaruostetta, mikä ei tarvikeakselin kyseessä ollessa ihmetyttänyt. Vaihdeakselin stefa oli toiminut moitteetta, öljyvuotoja ei näkynyt.

Magneeton kopan alta paljastuu siisti magneeton puoli ja normaalin likainen vetoakselin puoli.

Magneeton kopan alta paljastuu siisti magneeton puoli ja normaalin likainen vetoakselin puoli.

Vauhtipyörä pyörii vastapäivään ja sen mutterin kierre on normaali, oikeakätinen. Vauhtipyörää täytyy pitää lujasti paikallaan, jotta mutterin saa auki. Suzukilla on tähän erikoistyökalu (09930-40113 Rotor holder, työkalu nro 30). Jos tällaista ei ole saatavilla, vältä työntämästä mitään vauhtipyörän aukkoihin siten, että pohjalevy tai puolat rikkoontuvat. Iso vaihde päälle ja kaveri istumaan mopon päälle jarruja painamaan voi auttaa, samoin napautus kumivasaralla tms. vääntimen päähän.

Suzukin erikoistyökalu vauhtipyörän kiinni pitämiseen.

Suzukin erikoistyökalu 09930-40113 vauhtipyörän kiinni pitämiseen mutteria avattaessa.

Vauhtipyörän mutteri pois.

Vauhtipyörän mutterin poisto. Kierre on oikeakätinen.

Vauhtipyörä on mutterivarmistuksen lisäksi tiukalla sovitteella ja kiinni kampiakselissa ja sitä pitää paikallaan kiertosuunnassa kiila. Vauhtipyörässä olevan ulosvetäjän kierre on vasenkätinen, eli ulosvetäjä kiristyy vauhtipyörään pyörittämällä ulosvetäjän runkoa vastapäivään. Vauhtipyörä tulee ulos kiristämällä ulosvetäjän pulttia myötäpäivään ja pitämällä vauhtipyörää samalla vastaan.

Ulosvetäjä vauhtipyörän vasenkätiseen kierteeseen.

Ulosvetäjä vauhtipyörän vasenkätiseen kierteeseen.

Puolien vaihto_4

Vedä irronnut vauhtipyörä varovasti ulos.

Kyseisessä yksilössä oli aikanaan pahoja moottorilohkovikoja, joita korjailtiin mm. kemiallisella metallilla. Jännitti nähdä, ovatko korjaukset toimineet ja pitäneet lian ja veden poissa.

Magneeton tiivistys on toiminut.

Magneeton tiivistys on toiminut.

Vauhtipyörä on puhdas kuten pitää olla.

Vauhtipyörä on puhdas kuten pitää olla. Ei löytynyt myöskään raapimisjälkiä.

Kierrelukitteesta huolimatta valopuolan ruuvit olivat löystyneet ja se pääsi hieman liikkumaan. Tämä on voinut aiheuttaa havaittua valojen ”vilkkumista”. Katastrofi on ollut lähellä; valopuolan irtoaminen hajottaa paljon paikkoja, sillä pyörimisnopeus ja liike-energia on suuri.

Yksi vika löytyi, valopuolan ruuvit olivat löystyneet.

Yksi vika löytyi, valopuolan ruuvit olivat löystyneet.

Pohjalevy irti.

Pohjalevy irti.

Siistiä täälläkin, sähköjohdot yhä napakasti kiinni.

Siistiä täälläkin, sähköjohdot yhä tarkoin suojattu ja vedonpoistaja pitää ne napakasti paikallaan.

Seuraavaksi otettiin juotokset esiin ja sulatettiin ne auki. Kutistesukan saa leikattua kätevästi teräväkärkisellä ”kirurginveitsellä”. Tässä vaiheessa on syytä valokuvata tai kirjoitella värit ylös.

Kutistesukat saa nätisti auki

Kutistesukat saa nätisti auki ”kirurginveitsellä”.

Juotokset näkyvillä.

Juotokset näkyvillä.

Tässä vaiheessa kannattaa katsoa värit ja merkata ne ylös.

Tässä vaiheessa kannattaa katsoa värit ja merkata ne ylös.

Pohjalevy ja vanhat puolat. Huomaa eripituiset kiinnitysruuvit ja sytytyspuolan tärkeä maadoitusjohto.

Pohjalevy ja vanhat puolat. Huomaa eripituiset kiinnitysruuvit ja sytytyspuolan tärkeät maadoitusjohto sekä vedonpoistajaklipsi.

Kokoaminen ja kytkennät

Seuraavaksi kiinnitetään puolat pohjalevyyn ja reititetään johdot. Kierrelukite ja oikea kiristysmomentti on kokoonpanijan välttämättömät ohjenuorat. Huomioi, että johtimet eivät saa jäädä puristuksiin tai hankaukseen.

Kierrelukite on välttämättömyys.

Kierrelukite on välttämättömyys.

Johdot taitetaan nätisti pohjalevyn aukoista sisään.

Johdot taitetaan nätisti pohjalevyn aukoista sisään.

Sytytyspuolan molemmat johtimet on juotettava kiinni. Opettele oikea juotostekniikka harjoittelemalla johonkin muuhun kohteeseen. Ns. kylmäjuotoksia ei saa syntyä, sillä ne saattavat aiheuttaa ylimääräistä vastusta (resistanssia) ja tuottaa siten jännitehäviöitä. Kaikki juotosliitoksen osat on lämmitettävä kunnolla kolvin kärjellä. Onnistuneen juotoksen tuntomerkki on juotoksen kiiltävyys.

Sytytyspuolan johtimet on juotettava kiinni.

Sytytyspuolan johtimet on juotettava kiinni.

Käytettävissämme ei ollut ihan Suzukin väristandardien ja tarvikejohtosarjamme värien mukaisia johtimia. Oleellista kuitenkin on dokumentoida värit mopoyksilön omaan sähkökaavioon.

Kytkennät on esitetty seuraavassa. Alleviivattu on itse tarvittaessa tehty välijohto ja sen väri. Värikoodit sähkökaaviosta. Valopuolan toinen käämipiiri (vihreä johdin) kytkettiin ja vedettiin akkukotelolle asti pitkällä mustalla johtimella myöhempää käyttöä (6V -> 12V muutos) varten.

  • Sytytyspuola (primääripuola), 2 johdinta
    • Maadoitus: B/W -> B/W
    • Sytytys/CDI: R -> B/Y
  • Valopuola, 3 johdinta
    • Valot: W -> Y -> Y/W
    • G -> B

Käytimme yhden neliömillimetrin johtimia. Älä käytä liian ohuita johtimia jännitehäviöiden ja johdon ylikuormituksen välttämiseksi ja käytä aina kutistesukkaa suojaamaan liitoksia (juotokset ja abikoliitokset). Sähkömiehen teippi on se huonompi vaihtoehto, sillä ajan myötä se voi purkautua auki. Tehokas kuumailmapuhallin voi sulattaa puolien käämien eristeitä, joten käyttele sitä kohdennetusti ja varoen. Säädettävän lämpötilan puhallin oikeaan kutistesukkalämpötilaan säädettynä (vaihtelee sukkatyypeittäin, 120 astetta Celsiusta on hyvä aloituslämpötila) on tässä erityisen hyvä apu.

Ohuet kutistesukat johtimiin

Ohuet kutistesukat johtimiin

Kutistus kuumailmapuhaltimella. Varo sulattamasta puolien käämien eristeitä!

Kutistus kuumailmapuhaltimella. Varo sulattamasta puolien käämien eristeitä!

Tässä vaiheessa ennen pohjalevyn asennusta puhdistimme magneeton puolen liuotinpesulla, kuivasimme ja tarkistimme kampiakselin ja vaihdepolkimen stefat ja kokeilimme molempien akselien välykset. Kaikki oli ok, kuin vasta tehdyn koneremontin jäljiltä.

Liuotinpesty magneeton puoli.

Liuotinpesty magneeton puoli.

Kampiakselin välyksen testausta.

Kampiakselin välyksen testausta.

Kierrelukitetta laitettiin myös pohjalevyn ruuveihin.

Kierrelukitetta laitettiin myös pohjalevyn ruuveihin.

Leveää kutistesukkaa johtonipulle.

Jälleen kutistesukkaa johtimille ja nyt leveämpää kutistesukkaa johtonipulle.

Puhjalevy paikoillaan. Musta johto tulee valopuolalta ja on tulevaisuuden 6V - 12V muutosta varten.

Puhjalevy paikoillaan ja kutistesukat kutistettu. Musta pitkä johto tulee valopuolan toisesta käämistä ja on tulevaisuuden 6V – 12V muutosta varten. Kuvassa ei näy magneeton läpiviennin suojakumi, joka toki tulee laittaa paikoilleen.

Vauhtipyörä kiinnitetään huolellisesti puhdistettuun akseliin kohdistamalla vauhtipyörän kiilaura tarkasti kiilaan ja yksinkertaisesti painamalla tasaisesti niin pitkälle kuin se menee ja kiristämällä loppuun mutterin avulla. Jos sovite on erityisen tiukka, voi käyttää hiukan korkean viskositeetin vaseliinia akselilla ja lämmittää vauhtipyörää. Ulosvetäjän voi kiertää paikoilleen sen pultti irroitettuna ja lyödä kumivasaralla tai metallivasaralla puupalikka välissä vauhtipyörä sovitteeseen, ks. artikkeli ”Moottorin kokoaminen 3- magneeton puoli”.

Kiinnityksen jälkeen on muistettava kokeilla, että vauhtipyörä on paikoillaan aksiaali- ja radiaalisuuntaan ja pyörii hankaamatta puolien metalliosiin.

Vauhtipyörä paikoilleen ja paikallaolon kokeilu.

Vauhtipyörä paikoilleen ja paikallaolon kokeilu.

Kone kannattaa käynnistää ilman magneeton koppaa ja katsoa pyöriikö vauhtipyörä vemppumatta ja täristämättä. PeeVeli Lähti käyntiin ensipolkaisulla.

Pyörityskoe ilman magneeton koppaa.

Pyörityskoe ilman magneeton koppaa.

Saimme käyttöömme mainion Fluke 175 TRMS -mittarin, jolla säröytyneitä vaihtojännitteitä voi mitata luotettavasti. Mittasimme mopon käynnissä ollessa ulostulojännitteet valopuolasta ilman jännitteensäädintä kuormittamattomana (ilman valoja tms.) sekä sen kanssa. HUOM: ilman jännitteensäädintä ei kannata laittaa valoja päälle, etteivät polttimot kärähdä.

Jännite puolalta oli n. 1/4 kaasulla reilut 13VAC ilman säädintä ja reilut 7VAC sen kanssa. Kovilla kierroksilla jännite nousi ilman säädintä vielä useita voltteja, joten puolassa on kyllä potkua – ja jännitteen säädin on todella tarpeen. Testasimme lopuksi alkuperäisen 6V jännitteensäätimen kanssa myös valot, jotka paloivat nyt kirkkaammin ja vilkkumatta.

Vaihtojännite rungon ja Y/W johtimen väliltä kuormittamattomana

Vaihtojännite rungon ja Y/W johtimen väliltä kuormittamattomana ilman jännitteensäädintä. HUOM: älä laita valoja päälle ilman jännitteensäädintä, sillä ne voivat kärähtää!

Vaihtojännite rungon ja Y/W johtimen väliltä jännitteensäätimen leikkaamana

Vaihtojännite rungon ja Y/W johtimen väliltä jännitteensäätimen leikkaamana

Lopuksi laskettiin kuminen läpiveintisuoja paikoilleen, laitettiin magneeton koppa kiinni magneeton tiivistys huolellisesti varmistaen sekä rasvattiin vaihdepolkimen akseli vaseliinilla ruostumisen estämiseksi ja kiinnitettiin poljin.

Etuhaarukan purkaminen


Projektissa käytännössä ainoaksi purkamattomaksi kokonaisuudeksi jäi aikanaan etuhaarukka, sillä se toimi hyvin. Haarukka vain irroitettiin puhdistettiin ja ruostesuojattiin ohjausputken osalta, maalattiin alaputkien osalta ja kokoonpantiin runkoon uudelleen (ks. artikkelit ”Rungon purkaminen”, ”Etuhaarukan maalaus” ja ”Rungon kokoaminen 1 – takaswingi, etuhaarukka, tanko”). Tämä osoittautui virheeksi, sillä etujousitus meni ajoissa lopulta vaarallisen veteläksi. Jarrut, ohjaus, jousitus ja iskunvaimennus ovat mopon tärkeimmät turvallisuuteen vaikuttavat osatekijät, joten haarukka otettiin uudelleen työlle.

Purkamisessa tärkein ohjeistus on räjätytyskuva. Erittäin hyödyllinen on myös kuvineen Suzuki PV Service Manual sivut 6-10…6-14. Jos englannin kieli ei taivu, kannattaa kysyä käännösapua tai katsoa ainakin kuvat läpi.

Suzuki PV etuhaarukan räjäytyskuva

Suzuki PV etuhaarukan räjäytyskuva

Ensin irroitetaan vaijerit ja eturengas sekä etulokasuoja.

Jarru- ja nopeusvaijerin irroitus

Jarru- ja nopeusvaijerin irroitus

Pyörä irti

Pyörä irti

Etulokarin kiveniskusuojaus on todella suomessa tarpeen ja se on toiminut hyvin.

Etulokarin kiveniskusuojaus on todella suomessa tarpeen ja se on toiminut hyvin.

Putket irroitetaan ottamalla sivupultit ja ylätulpat irti. Tässä vaiheessa putket kannattaa pitää pystyssä, ettei tule öljyvahinkoa.

Putket irroitetaan ottamalla sivupultit sekä ylätulpat irti. Varö läikyttämästä öljyä!

Sivupultit sekä ylätulpat irti. Varo läikyttämästä öljyä!

Tulpat kannattaa laittaa takaisin kiinni, vaikka tyhjentäisikin isommat öljyt, sillä öljyä jää joka tapauksessa putkiin. Viat alkoivat paljastua: toinen putkista oli lyhemmällä kuin toinen.

Tulpat uudelleen sisäputkiin kiinni, jotta öljyt pysyvät toistaiseksi sisällä. Toinen sisäputki on lyhyemmällä kuin toinen, ts. viat alkavat tulla esiin.

Tulpat uudelleen sisäputkiin kiinni. Putkien pituusero lepoasennossaan on selvä.

Tulpat ja jouset irti

Tulpat ja jouset irti

Ölyä kannattaa valutella pois putkia hitaasti liikutellen edes takaisin, ettei pääse öljysuihkuun myöhemmin.

Huonoksi päässyttä (vetistä) öljyä tuli vähänlaisesti.

Huonoksi päässyttä (vetistä) öljyä tuli vähänlaisesti.

Seuraavaksi irroitettiin pölysuojat. Ne ovat tärkeät osat, jotka käytännössä varmistavat osaltaan stefojen toimintaa ja pidentävät niiden ikää. Tämän yksilön suojat olivat todella tiukassa ja niitä lioteltiin irroitusaineella ja sauma kierrettiin mattoveitsellä kun havaittiin, että siinä oli jonkinlaista liimaa.

Pölysuojien irroitteluun tarvittiin mattoveistä.

Pölysuojien irroitteluun tarvittiin mattoveistä.

Pölysuoja irtoaa naputtelemalla varovasti.

Pölysuoja irtoaa naputtelemalla varovasti tasaisesti eri puolilta.

Pölysuojan alla on käytetty jonkinlaista tiivisteliimaa. Metallinen alapinta on ruosteessa.

Pölysuojan alla on käytetty jonkinlaista tiivisteliimaa. Metallinen alapinta on ruosteessa.

Öljytiiviste pysyy paikoillaan pidätinrenkaan avulla. Stefa otetaan huolto-ohjeen mukaan pois erikoistyökalulla (Oil seal remover), mutta kotikonsteinkin se onnistuu, kunhan vain muistaa suojata alumiinisen poteronreunan.

Stefan pidätinrenkaan irroitus

Stefan pidätinrenkaan irroitus

Stefa oli tiukassa. Irroitus nostelemalla tasaisesti suojaten poteron reunoja vanhalla sisäkumilla.

Stefa oli tiukassa. Irroitus nostelemalla tasaisesti suojaten poteron reunoja vanhalla sisäkumilla.

Stefa oli heikossa kunnossa

Stefa oli heikossa kunnossa

Putken irroituksen voi aloittaa irroittamalla pohjaruuvin. Pohjaruuvin tiivisteenä on kuparialuslevy. Tässä yksilössä oli käytetty myös tiivisteliimaa.

Alapulttien irroitus

Alapulttien irroitus

Alapultissa on kuparialuslevy tiivisteenä. Myös tiivistemassaa oli käytetty kierteissä.

Alapultissa on kuparialuslevy tiivisteenä. Myös tiivisteliimaa oli käytetty kierteissä.

Jokin ja joku oli iskenyt toisen tiivisteprikan niin lujaa sisään, että se oli purrut alumiiniin ja jäänyt jumiin.

Toinen tiivistystä hoitavista kupariprikoista oli juntattu huolella  syvälle.

Toinen tiivistystä hoitavista kupariprikoista oli juntattu huolella syvälle.

Myös putken irroitus vaatii huolto-ohjeen mukaan erikoistyökalun (T-handle + attachment D + 6 mm T-type hexagon wrench). Kamasan työkalusarjan ruuvarirungosta, jatkovarresta ja kärjenpidinholkista sai rakenneltua tarpeeksi ohuen ja pitkän varren.

Sisäputken itse tehty pitkä irroitustyökalu

Sisäputken itse työkalusarjasta viritelty pitkä irroitustyökalu. Teipit varmistavat että osat eivät putoa.

Sisäputken ruuvin avaus

Sisäputken ruuvin avaus

Putken poisto

Putken poisto

Nyt päästiin näkemään sisäputki osineen.

Sisäputken ja jousen poisto

Sisäputken ja jousen poisto

Sama purkutyöjärjestys toistettiin toisellekin putkelle ja lopulta kaikki osat olivat levällään…tai oikeastaan järjestyksessä.

Osat järjestyksessä

Osat järjestyksessä

Seuraavana oli vuorossa osien pesu biologisesti hajoavalla liuotinpesulla ja osien huolellinen tarkastus, jotta tiedetään, mitä varaosia tarvitaan.

Osat pestiin liuotinpesuaineella pariin kertaan

Osat pestiin liuotinpesuaineella pariin kertaan. Apuna vanha sivellin.

Jousien huolto-ohjeen mukainen vaihtopituus on 169 mm. Sisäputken jousille ei ole pituusohjearvoa, mutta nekin on hyvä tarkistaa.

Jousien pituuden tarkastus

Jousien pituuden tarkastus

Myös sisäputken jouset on hyvä mitata

Myös sisäputken jouset on hyvä mitata

Sekä sisä- että ulkoputkien tulee olla suorat ja ainakaan pahoja hankaumia ei saa olla.

Toinen putkista on ottanut päästään hieman kiinni.

Toinen putkista on ottanut päästään hieman kiinni.

Pölysuojien metallikohdat olivat ruostuneet.

Pölysuojien metallikohdat olivat ruostuneet. Nämä hiotaan ja ruostesuojataan.

Tulpat olivat hyvässä kunnossa mutta O-renkaat olivat kovettuneet.

Tulpat olivat hyvässä kunnossa mutta O-renkaat olivat kovettuneet ja ne vaihdetaan.

Sisäputken renkaat olivat kuluneet; reunat olivat pyöristyneet ja lohkeilleet.

Sisäputken renkaat olivat kuluneet; reunat olivat pyöristyneet ja lohkeilleet, joten ne vaihdetaan.

Ikävin löydös oli tuhottu tiivistepotero. Öljytiiviste oli otettu pois ilmeisesti hakkaamalla se ruuvimeisselillä tms. palasiksi. Öljy pääsee kuitenkin vuotamaan urista pois tiivisteen ohi ja potero on siksi korjattava.

Ikävin löydös oli tuhottu oljytiivistepotero

Ikävin löydös oli tuhottu oljytiivistepotero

Nämä on hiottava

Vioitettu tiivistepotero on yritettävä korjata ja poistaa vanhat tiivisteliimat.

Lokarinkierteitä on lienee korjailtu mutta ne toimivat.

Lokarinkierteitä on lienee korjailtu mutta ne toimivat.

Pienet fiksailut tehtiin saman tien ja osat laitettiin tilaukseen. Toki olisi voinut ostaa n. 14 € hintaiset pölysuojat mutta toisaalta fiksailuun meni muutama minuutti.

Ruosteet poistettu. Joitain syöpymiä jäi.

Ruosteet poistettu. Joitain syöpymiä jäi. Tähän vielä ruostesuojaus ennen kokoonpanoa.

Poteron reunojen siivous

Poteron reunojen siivous

Kaikki vanha tiivisteliima ja lika sekä purseet pois.

Kaikki vanha tiivisteliima ja lika sekä purseet pois.

Pölysuojaa kokeiltiin välillä paikoilleen. Sen on istuttava hyvin ja suorassa.

Pölysuojaa kokeiltiin välillä paikoilleen. Sen on istuttava hyvin ja suorassa.

Suojaus ennen ruostesuojakäsittelyä

Suojaus ennen ruostesuojakäsittelyä

Tiivistepoteron lovet peittoon

Kovia kokeneen tiivistepoteron lovet peittoon

Ruostesuojamaalikertona suihkauteltiin pari kertaa

Ruostesuojamaalikertona suihkauteltiin pari kertaa

Valmista on. Tiivistepoteroa pitää vielä hioa ja sovitella siihen stefaa.

Valmista on. Tiivistepoteroa pitää vielä hioa ja sovitella siihen stefaa.

Dremel-porakoneella ja tynnyrilaikalla tiivistepoteron hionta onnistuu kätevästi

Dremel-porakoneella ja tynnyrilaikalla tiivistepoteron hionta onnistuu kätevästi

Sähkömittauksia ja -vikoja


Seuraavassa on esitelty sähkömittauksia ja niihin liittyviä mahdollisia ongelmia. Värikoodit ovat Suzuki PV:n sähkökaaviosta. Huomaa, että johdotuksesi ja johtosarjasi värit voivat hyvinkin olla erilaiset. Etsi oikea sähkökaavio, jota moposi sähköistys noudattaa tai selvitä johdotus itse.

Yleismittarin käyttöön kannattaa perehtyä katsomalla esim. Opetushallituksen artikkeli ”Yleismittarit ja niiden käyttö”.

1) SYTYTYS

Sytytyksen perusongelmia mopoissa

Mopoilijoiden peruspäänsärkyjä ovat sytytyksen puuttuminen kokonaan tai sen epämääräinen toiminta. Ensimmäisessä tapauksessa vianetsintä on huomattavasti helpompaa kuin jälkimmäisessä.

Vastusmittarilla mitattaessa puola sattaa nayttää (lähes) oikeita arvoja ja on silti rikki. Hyvin pieniresistanssisten (alle 1 ohm) puolien mittaus halvoilla yleismittareilla on haastavaa. Mittarista ja sen johdoista voi tulla virhettä, joka antaa väärän kuvan puolan tilasta. Eristysresistanssimittarilla saa luotettavimmat tulokset, sillä voi myös havaita ns. läpilyöntivaurion.

Jos mopossa on ollut sytytysvikoja ja jännite ei ole päässyt kunnolla purkautumaan, puolassa on saattanut olla rajuja jännitteiden nousuja (jopa kaksin- tai kolminkertaisia). Tämä voi aiheuttaa eristyksen pettämisen puolan käämissä ja sen seurauksena yksi tai useampi käämikierros on oikosulussa. Tämä hidastaa puolan toimintaa ja sytytys toimii heikosti tai oudosti. Oikosulun johdosta puola myös lämpiää.

Sytytysjohtimen (tulpanjohto) tyypit ja ominaisuudet

Sytytysjohtimia – eli tulpanjohtoja – myydään monenlaisia ja monin argumentein.

Yleisesti on käytössä kolmea eri tyyppiä:

  • Tarviketyyppinen (OEM) on hiiliytiminen, on yleensä silikonieristetty korkearesistanssinen johdin (carbon core suppression), tyypillinen resistanssi 10000-15000 Ohmia/metri
  • Spiraalijohtimet ovat matalaresistanssisia ja kuparia tai terästä (low resistance spiral core), tyypillinen resistanssi 1000-1500 Ohmia/metri. Joitain johtimia kaupataan ”tehojohtoina” (very low resistance) ja niiden resistanssi on 100-150 Ohmia/metri.
  • Kupariytiminen kumi- tai muovieristetty matalaresistanssinen johdin (solid/copper core), tyypillinen resistanssi on kuten normaalilla sähköjohdolla eli näyttää yleismittarilla oikosulkua

Tarvike (OEM) -tyyppiset johdot ovat edullisia, mutta samalla ne myöskin ovat kulutustavaraa. Toimivat kyllä kaikissa järjestelmissä. Kuntoa on syytä tarkkailla aika ajoin.

Spiraalijohtimet ovat osavalmistajien temmellyskenttä niitä kaupataan erilaisilla lupauksilla (tehonlisäys, kipinän voimakkuus). Näihin lupauksiin kannattaa suhtautua varauksella.

Tarvikejohtojen vaihto hyvälaatuisiin spiraalijohtoihin kasvattaa sytytystulpalle tulevan kipinän energiaa noin 10%. Moottoritehon nousu on kiinni monista muistakin tekijöistä, sitä ei välttämättä tule lisää.

Pieniresistanssisten (alle 100 Ohmia/metri) johtojen tai kupari/metalli -ytimisten johtimien käyttäminen elektronisissa järjestelmissä on riskialtista muun järjestelmän kannalta. Tulpan tai johtimen vaurioituessa koko sytytysjärjestelmä voi kärähtää ylijännitepiikistä; useimpia järjestelmiä ei ole vain tarkoitettu tällaisille johtimille.

Kupari/metalli ytimiset johtimet ovat tarkoitettu kärjellisiin järjestelmiin sekä magneettosytytyksellä varustettuihin laitteisiin. Nämä johdot aiheuttavat sähkömagnettista sekä radiotaajuista häiriöitä (tutummin naapuria kiusaava radiorätinä).

Sytytyspuolan (CDI:n sisällä) mittaus

Suzuki PV sytytysjärjestelmä

Suzuki PV sytytysjärjestelmä

Ensiökäämi mitataan puolalle tulevien napojen välistä. Toisiokäämi mitataan sytytystulpan johtojen kontakteista. Suzuki PV:n CDI-yksikön sisällä olevan puolan toisiokäämin resistanssi mitataan tulpanjohdon hatussa olevan kontaktin ja maan välistä ja se on välillä 15-18 kOhm.

CDI-yksikön testaus yleismittarilla

CDI-yksikön testaus yleismittarilla

Kattavan testin voi tehdä yleismittarin vastusmittauksella mittaamalla kolme mittausta oheisen taulukon sarakkeiden mukaan, huomioiden mittarin +/- johtimien suunta. Esim. kun laittaa mittarin miinusjohtimen CDI-boksiin tulevaan B/Y -johtimeen ja tulpan hatun napaan mittarin plusjohtimen, vastusarvon tulee olla 50-200 Ohm. Vastusarvo mittarien johtimien ollessa toisin päin on aivan eri, 38-58 Ohm. Tämä ero juontuu yleismittarin generoiman mittausvirran suunnan muutoksesta.

CDI-yksikön testaus yleismittarilla, arvot eri mittausväleistä

CDI-yksikön testaus yleismittarilla, arvot eri mittausväleistä ja eri mittarin mittausjohtojen suunnilla

Jos ohmimäärät eivät vastaa taulukkoa, vaihda CDI-yksikkö.

Magneeton sytytyspuolan (primääripuolan) mittaus

Magneeton sytytyspuolan (primääripuolan) resistanssi mitataan johtimien B/R – B/W välistä ja sen tulee olla välillä 90-140 Ohm.

Sytytystulpan mittaus

Sytytystulpan ilmaväli mitataan rakotulkilla ja sen tulee olla 0,6 – 0,7 mm. Sytytyssuorituskyky on 8 mm (1 atm = 1 ilmakehän paineessa).

Sytytystulpan kärkiväli

Sytytystulpan kärkiväli

Kipinän voi testata irroittamalla tulppa ja laittamalla se tulpanhattuun kiinnitettynä rungostaan vaikka sylinterin kanteen kiinni ja polkaisemalla ja havainnoimalla kipinä.

Sytytystulpan hattu kiinni ja tulpan rungon maadoitus kanteen. Kevyt polkaisu ja kipinän pitäisi näkyä päivänvalossakin.

Sytytystulpan hattu kiinni ja tulpan rungon maadoitus kanteen. Kevyt polkaisu (moottori pyörähtää vain hieman) ja kipinän pitäisi näkyä päivänvalossakin. Muista, että virran pitää olla päällä ja/tai sammutusnappi RUN-asennossa!

Kondensaattori

Tyypillisesti kärjellisten sytytysten kondensaattorin kapasitanssiarvo on 0,2…0,5 uF (mikrofaradia) ja jännitekesto 1000 V. Kondensaattori saattaa rikkoutua sytytysvirran ensiöpiirin virtapiikeistä. Kondensaattori saattaa näyttää oikeaa kapasiteettia, mutta vastus on salakavalasti kasvanut ja virta ei kuljekaan entiseen tapaan.

Mallissa ”Saudi Arabia” kondensaattorin kapasitanssiarvo on 0,18 +/- 0,02 uF.

2) VALOT

Suzuki PV valojen sähköjärjestelmä

Suzuki PV valojen sähköjärjestelmä

Valopuolan ja valopiirin mittaukset

Magneeton valopuolan resistanssi mitataan johtimien Y/W – B/W välistä ja sen tulee olla välillä 0-1 Ohm. Huomioi mittarisi ominaisuudet mitatessasi näin pieniä vastusmääriä.

Valopuolan antama vaihtojännite (AC) mitataan yleismittarilla johtimien Y/W ja B/W välistä. Valopuola antaa jännitettä kuormattomana seuraavasti: 6 V (2500 kierrosta/min) ja 9 V (4000 kierrosta/min).

Valopiirin vaihtojännite (AC) mitataan yleismittarilla moottorin ollessa käynnissä n. 5000 kierrosta/min, etuvalolle tulevasta johtimen, joko HI (väri Y) tai LO (väri W) ja maan välistä. Huomaa, että valokatkaisimen tulee tietysti olla siinä asennossa (HI tai LO), minkä asennon johtoa mitataan. Jännitteensäätimellä säädetty (reguloitu) valopiirin jännite on 6,6 – 7,2 V (koneen käydessä n. 5000 kierrosta/min).

Suzuki PV ”Saudi Arabia” -malleissa valopuolan piirin vaihtojännite (AC) mitataan johtimien Y ja B/W välistä ja on 2500 kierroksella 6V ja 8000 kierroksella 8,5V. Mallissa on 6V 4 Ah akku (tyyppi 6N4B 2A) tasasuuntaajan takana, mutta valosähköpiiri toimii siis vaihtojännitteellä.

Huomaa myös, että edellä oleva pätee vaihtosähköisille valoille. Joissain malleissa on sekä jännitteen säädin (12V:iin rajoitettu jännite) että tasasuuntaaja muuttamassa vaihtojännite tasajännitteeksi sekä akku ja valoja syötetään tasajännitteellä. Tällöin jännite tulee luonnollisesti mitata tasajännite (DC) mittauksella, eikä edellä olevat arvot päde.

Kytkinten mittaus

Kytkinten (valokatkaisijan kaikki asennot, jarruvalokatkaisijat, sammutusnappi, äänimerkki) kunto mitataan yleismittarin ohmimittarilla tai johtavuusilmaisimella (”piippari”) alla olevan kuvan mukaan. Ohmilukemien täytyy olla hyvin pienet (käytännössä mittarin johtimien resistanssi, alle 1 Ohm), isompi lukema kertoo kontaktien hapettumista. Valo toki saattaa palaa, mutta himmeämmin, jos kytkimen kontakteissa on jännitehäviötä aiheuttavaa resistanssia.

Suzuki PV kytkinten testaus

Suzuki PV kytkinten testaus

3) SÄHKÖJÄRJESTELMÄN HUOLTO

Suositeltavaa sähköjärjestelmän kunnossapitoa käyttäjän toimesta

Ei kannata odottaa, että mopo alkaa oireilla tai lopettaa kokonaan toimintansa, sillä seuraavien toimenpiteiden teko on helppoa ja suhteellisen nopeaakin. Pieni vaiva säästää monelta harmilta.

  • Sytytystulpan kunnostus
  • Liittimien hapettumisen seuranta ja puhdistus tarvittaessa (mm. akun kengät ja navat)
  • Johtojen kunnon seuraaminen (liitokset, johtojen eristykset)
  • Katkaisijoiden liittimien puhtaana pitäminen
  • Sähköjärjestelmän suojauksien kunnon seuraaminen (kutistesukat, liitinsuojat, kumit)
  • Katkojan kärkien kunnostus (kärjelliset sytytykset)
  • Kondensaattorin kunnon tarkastus (kärjelliset sytytykset)
  • Sytytys- ja valopuolien käämien kunnon toteaminen (mittaus, silmämääräinen eristystarkistus)
  • Magneeton magneettien tarkistus (halkeamat, liimauksien pettäminen)

HUOM: kärjettömien järjestelmien moduuleita (CDI) ei yleensä korjata niiden rikkoutuessa, vaan ne vaihdetaan.

4) YLEISMITTARIN OMINAISUUKSISTA

Hyvä mittaaja on huolellinen ja kriittinen; pitää miettiä, onko kalusto ja saatu tulos järkevä. Ota selville käyttöohjeesta yleismittarisi ominaisuudet ja huomioi ne.  On hyvä tietää, että perinteiset halvat yleismittarit eivät välttämättä mittaa luotettavasti magneeton usein säröytyneitä (aaltomuoto ei ole kauniin symmetrinen) jännitteitä. Näissä mittareissa ns. RMS (Root Mean Square) mitataan tasasuuntaamalla vaihtovirta, määrittelemällä sen keskiarvo ja kertomalla tulos luvulla 1,1 (kerroin kuvaa täydellisen siniaallon keskiarvon ja RMS-arvon välistä suhdetta).

Kun säröytyneitä virta-aaltoja halutaan mitata varman päälle, tarvitaan True-RMS (TRMS)-ominaisuuksilla varustettu yleismittari. Nämä sitältävät monimutkaisempaa elektronista mittaustekniikkaa vaihtovirran todellisen tehollisen arvon näyttämiseksi riippumatta siitä minkälainen aaltomuoto virralla on. Niin kauan kuin aaltomuoto on mittarin muotokertoimen ja kaistanleveyden sisällä, saadaan oikea tulos.

On suositeltavaa käyttää oikean arvon antavaa TRMS -mittaria magneeton vaihtojännitemittauksissa. Toki monimutkaisempi rakenne tekee TRMS -mittareista perinteiseen keskiarvomittaukseen perustuvia yleismittareita kalliimpia. Kaikkein halvimmat yleismittarit maksavat muutamista Euroista muutamaan kymmeneen euroon ja ne käyttävät tyypillisesti keskiarvomittausta. TRMS -ominaisuuksilla varustettu laadukas yleismittari maksaa helposti 100 euroa tai enemmän.

– – –

Lähteitä: edu.fi, motopedia, motot.net, sfnet.harrastus.elektroniikka, Suzuki PV Service Manual